Discrete Approximation by a Dirichlet Series Connected to the Riemann Zeta-Function
نویسندگان
چکیده
In the paper, a Dirichlet series ζuN(s) whose shifts ζuN(s+ikh), k=0,1,⋯, h>0, approximate analytic non-vanishing functions defined on right-hand side of critical strip is considered. This closely connected to Riemann zeta-function. The sequence uN→∞ and uN≪N2 as N→∞.
منابع مشابه
Notes Relating to Newton Series for the Riemann Zeta Function
This paper consists of the extended working notes and observations made during the development of a joint paper[?] with Philippe Flajolet on the Riemann zeta function. Most of the core ideas of that paper, of which a majority are due to Flajolet, are reproduced here; however, the choice of wording used here, and all errors and omissions are my own fault. This set of notes contains considerably ...
متن کاملq-Analogues of the Riemann zeta, the Dirichlet L-functions, and a crystal zeta function
A q-analogue ζq(s) of the Riemann zeta function ζ(s) was studied in [Kaneko et al. 03] via a certain q-series of two variables. We introduce in a similar way a q-analogue of the Dirichlet L-functions and make a detailed study of them, including some issues concerning the classical limit of ζq(s) left open in [Kaneko et al. 03]. We also examine a “crystal” limit (i.e. q ↓ 0) behavior of ζq(s). T...
متن کاملA more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function
By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...
متن کاملq-Riemann zeta function
We consider the modified q-analogue of Riemann zeta function which is defined by ζq(s)= ∑∞ n=1(qn(s−1)/[n]s), 0< q < 1, s ∈ C. In this paper, we give q-Bernoulli numbers which can be viewed as interpolation of the above q-analogue of Riemann zeta function at negative integers in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Also, we will treat some...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2021
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math9101073